
Double Doodles: Sketching Animation in Immersive Environment
With 3+6 DOFs Motion Gestures

Ruizhao Chen
Shanghai JiaoTong University

Shanghai, China

Ye Pan∗
Shanghai JiaoTong University

Shanghai, China

Zhigang Deng
University of Houston
Houston, Texas, USA

Lili Wang
Beihang University

Beijing, China

Lizhuang Ma
Shanghai JiaoTong University

Shanghai, China

Figure 1: Double Doodles: A novel 3+6 Degrees of Freedom (DOFs) two-staged inputs method, making full use of two asynchro-
nous inputs, for easily drafting expressive character animation in an immersive virtual environment.

ABSTRACT
We present “Double Doodles” to make full use of two sequential in-
puts of a VR controller with a total of 9 DOFs, 3 DOFs from the first
input sequence for the generation of motion paths and 6 DOFs from
the second input sequence for motion gestures. When engineering
our system, we take ergonomics into consideration and design a set
of user-defined motion gestures to describe character motions. We
employ a real-time deep learning-based approach for highly accu-
rate motion gesture classification. We then integrate our approach
into a prototype system, and it enables users to directly create char-
acter animations in VR environments using motion gestures with a
VR controller, followed by animation preview and animation inter-
active editing. Finally, we evaluate the feasibility and effectiveness
∗Corresponding author. whitneypanye@sjtu.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3613783

of our system through a user study, demonstrating the usefulness
of our system for visual storytelling dedicated to amateurs, as well
as for providing fast drafting tools for artists.

CCS CONCEPTS
•Computingmethodologies→Animation; •Human-centered
computing → Virtual reality.

KEYWORDS
character animation, 3D sketching, computer puppetry, interaction
techniques, gesture classification, virtual reality.

ACM Reference Format:
Ruizhao Chen, Ye Pan, Zhigang Deng, Lili Wang, and Lizhuang Ma. 2023.
Double Doodles: Sketching Animation in Immersive Environment With
3+6 DOFs Motion Gestures. In Proceedings of the 31st ACM International
Conference on Multimedia (MM ’23), October 29-November 3, 2023, Ottawa,
ON, Canada. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3581783.3613783

1 INTRODUCTION
Virtual reality (VR) devices enable new interaction paradigms for
character animation with immersive, interactive, and imaginative
features. They allow artists to navigate and interact with a 3D

6998

https://orcid.org/0000-0002-3056-0186
https://doi.org/10.1145/3581783.3613783
https://doi.org/10.1145/3581783.3613783
https://doi.org/10.1145/3581783.3613783
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581783.3613783&domain=pdf&date_stamp=2023-10-27

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Ruizhao Chen, Ye Pan, Zhigang Deng, Lili Wang, & Lizhuang Ma

immersive environment, and animate characters more naturally,
compared to 2D interface [20]. Existing methods succinctly inherit
the idea of puppet animation, determining the motion and position
of the character through gestures of different objects. The available
degrees of freedom (DOFs) are limited to 6 or less. However, there
is a gap between the number of possible character animations and
the number of possible gestures created through a VR controller
which is a rigid object with few DOFs.

Several tools have been developed to assist casual users in de-
signing 3D trajectories and character motions, using AR-enabled
mobile phones. Examples include PuppetPhone [2], AR-Pose [25],
and ARAnimator [27]. However, these workflows, by displaying
animation results on 2D screens, cannot provide animators with a
fully immersive 3D experience [19, 20]. Existing VR-based meth-
ods for creating animated characters in virtual environments, such
as Motion Doodles [22] and SMD [7], use the VR controller to
record the trajectories of its 6-DOFs over time. These trajectories
are then parsed into a sequence of actions that are used to animate
articulated characters.

Our objective is to assist users in creating more life-like and
intricate character animations, specifically those with more degrees
of freedom (DOFs), within immersive virtual environments. Using
a smartphone or conventional VR controller as an inextensible rigid
body as the input device only allows a maximum of 6 DOFs if a sin-
gle input is used. It is well known that 6 DOFs are often insufficient
to specify 3D character animations with rich details. We propose
“Double Doodles”, a novel 3+6 DOFs two-stage-inputs approach that
employs two asynchronous inputs to efficiently produce natural
and expressive character animations in immersive virtual environ-
ments. Through semantic decomposition of character animation
specification into two steps, this work allows users to specify total
9 DOFs to achieve substantially higher realism and detail-richness
of resulting character animations in VR. Addtionally, the core idea
of our approach is stepwise planning to reduce the cognitive load,
allowing users to plan the motion trajectory of the animation first
and then consider how to move along the trajectory. Our main
contributions can be summarized as follows:

• Proposal of VR-specific interaction rules to develop an in-
situ, 3+6 DOFs, two-stage-inputs method to produce realistic
and dynamic character animations interactively in immer-
sive VR environments.

• Introduction of metaphors to expertly process dynamic user
inputs and extension of deep learning algorithms to achieve
accurate classification of motion gestures.

• Development of a Unity engine prototype system to run on
off-the-shelf VR systems, and evaluation of its feasibility and
effectiveness through meticulously conducted user studies.

2 RELATEDWORK
2.1 Character Animation in AR/VR
By placing and controlling an avatar object of a real 3D character
model, computer puppetry [21] techniques allow users to define
character animations with intuitive user interfaces. Combined with
AR/VR technologies, users can directly see the generated animation
from different views in real-time [8]. The aforementioned traits

make for a more user-friendly and interactive approach to produce
character animation in AR/VR.

Presently, professional animation software implementing AR/VR
puppetry functions is still developing better interaction techniques,
mainly due to the intricate 2D interface, which requires a higher
degree of expertise to manipulate, or complex configuration steps
before producing any usable results [13, 26]. Thus, interests in de-
veloping simple and intuitive AR/VR user interfaces for animation
creation have grown significantly [8, 24].

Motion Doodles (MD) is a design that guides action synthesis
using 2D curves. Garcia et al. [7] expanded on this with their Spatial
Motion Doodles (SMD) system for VR platforms, which incorpo-
rates 3-DOFs and expands the concepts into 3D space. However,
the SMD method uses the VR controller as a metaphor for the char-
acter, which means the controller’s movements directly impact the
character. Thus, users must hold the controller like a puppet, rather
than in their hand, as originally intended.

Several other works along this line have been completed in AR
environment. Recently, the ARAnimator [27] was introduced to
generate character animation on mobile AR devices in casual set-
tings. This method increases the DOFs of the controller to six, which
allows users to create more possible motions for their characters.

These methods described above are trying to solve the same
issue known as the “DOF gap”, which refers to the difference in
DOFs between a 3D character and the control device. The device
is typically composed of multiple rigid bodies with no more than
6 DOFs. It is challenging to simultaneously convey or specify two
critical elements (gestures and paths) of a 3D character using a
6-DOFs controller only.

In this work we aim to increase the number of DOFs available
on existing VR controllers for character animation generation. Our
core idea is to decompose motions into motion gestures and motion
paths, and then record them separately with two-staged inputs.
We summarize the main feature differences between our work and
some previous related systems in Table 1.

Table 1: Our work VS. previous systems

Name MD SMD PP ARA Ours

Environment VR VR AR AR VR
DOF 2 3 3 6 3+6
Gesture design experts experts experts users experts/users
Classification Regexp Regexp FSM SVM NN
Devices PC HTC Vive Mobile Mobile Oculus Rift S

* MD: Motion Doodles[22], SMD: Spatial Motion Doodles[7], PP:
PuppetPhone[2], ARA: ARanimator[27], Regexp: Bayesian classification,
FSM: Fixed state machine, SVM: Support vector machine, NN: Neural net-
work.

2.2 VR Ergonomics in Computer Puppetry
VR technology provide thrilling and new ways for entertainment
and consumption of information. It offers exciting possibilities such
as practical, time-saving animation production, a rich narrative
device for conventional film and dynamic storytelling medium.
Virtual work environments can liberate users from physical world
constraints, potentially altering how they perform professional

6999

Sketching Animation in Immersive Environment With 3+6 DOFs Motion Gestures MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

activities [10]. The immersive feature of virtual reality also increases
users’ learning abilities [16, 17] to help them.

Due to the limitation of the human physiological structure and
the device’s gripping manner, it is practically impossible to develop
movements that accurately mirror the character’s dynamics. Liang
et al. [15] and Ye et al. [27] conducted studies on suitable gestures
for manipulating 3D characters. These works aim to maintain a
coherent mapping of motion gestures with character animation.
While it is required to evaluate the feasibility of actions in real-
world applications, it is also necessary to take into account the ease
with which actions can be recognized. Thus, our work incorporates
these two facets.

It is noteworthy that those interaction concepts designed for
AR-enabled mobile phones based methods [2, 27] are difficult to
directly translate or extend to VR-based methods, since their origi-
nal metaphor is inextricably linked to a mobile phone with a flat
rectangular shape and a camera. For example, it is feasible to imag-
ine the two bottom corners of the mobile phone as the character’s
feet [27]. However, this may not be valid for a cylindrical VR con-
troller. Standard VR controllers (e.g., HTC VIVE, Oculus, Valve
Index) have cylindrical bodies. Comparing to ARAnimator[27], the
VR input devices are difficult to be gripped on both edges like a
mobile phone (a flat rectangular shape), thus the two bottom cor-
ners cannot be metaphorized as the character’s feet. To utilize the
original ergonomic design of VR itself, we want to keep a doodling
and painting experience in our interaction design [22].

3 SYSTEM DESIGN AND DEVELOPMENT
3.1 VR Interaction Design: Two-staged Inputs
Various efforts have been attempted to tackle the well-known “DOF
gap” issue. The early 2-DOFs MD method [22] and the subsequent
3-DOFs SMD approach [7] have an insufficient number of DOFs,
limiting the number of actions that can be performed. Although the
ARanimator approach [27] employs a 6-DOFs puppetry metaphor,
which significantly enhances its expressive capabilities, it still suf-
fers from trail distortions and inaccuracies in motion recognition.
Distortions happen when the generated animations do not follow
the input trail precisely.

Inspired by the above works, we specify the object’s global XYZ
position displacement information in the first input while specify-
ing its local motion dynamics of the character during the second
input. Figure 2 illustrates the decomposition of DOFs control in our
method. Our method decouples global displacement information
from local motion dynamics, enabling the expression of posture
changes in all six DOFs of the character during movement. Using
two consecutive inputs of a VR controller, this method provides a
fixed-gripping approach and simplifies movement logic.

3.1.1 The First Input. The first input is used to determine the vir-
tual character’s 3D trajectory in a VR environment. The user holds
the controller like a brush and draws trajectories in the air. A red
curve will be used to indicate the plotted trajectory. Its positions are
sampled at the “brush tip” (refer to Figure 3). Specifically, the spatial
location information is determined using a white cube attached
to the head of the VR controller held by the user (illustrated in
Figure 3). We collect input data with 3 DOFs and a sampling rate of

Figure 2: The decomposition of the DOF control. We use the
XYZ coordinates in the first input to create 3D trajectory. The
second input, which contains XYZ coordinates and rotation
information, will then determine the motion gesture.

X

Y
Z

X

Y
Z

Actual trail of
controller

Head of controller
forms motion trail

“Brush head”:
sampling point

Central axis
extension line

(a) illustration of the trajectory (b) corresponding VR scene

Figure 3: Illustration of the first input. The VR controller
is regarded as a long-handled brush. Users can draw a 3D
trajectory for the character in the mid-air.

60Hz and then use these information to create a motion trajectory
in 3D space.

X

Y
Z

Z+
Corresponding first input

（Move up）

Swinging
Second input First input

X

Y
Z

rotX

(a) the first and second inputs (b) corresponding VR scene

Figure 4: Illustration of the second input (“climbing” motion
as an example). The character’s motion type is controlled
using all 6 DOFs, including XYZ coordinates and rotation
information.

7000

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Ruizhao Chen, Ye Pan, Zhigang Deng, Lili Wang, & Lizhuang Ma

3.1.2 The Second Input. The second input serves to inform the
generation of local motion dynamics of the 3D character. This input
is processed at a rate that is reduced in comparison to the first
input (e.g., 0.5 times normal speed), although the sample rate can
be adjusted. The reduction in rate is intended to allow the animator
sufficient time to design the animation effectively. This visualiza-
tion interface allows the user to employ pre-designed gestures,
described in Section 3.2, to specify local motion dynamics of the
character (as shown in Figure 4). After the completion of sampling,
the second input will be realigned, ensuring one-to-one temporal
correspondence with the first input data and the generation of
6-DOFs data, which directs pose synthesis.

3.2 Gesture Design
According to the summary of the actions required for various 3D
character animation productions in [27], 29 frequent actions can
be roughly classified into five groups, depending on the situational
information required. This study also identified those types of char-
acter motions that are commonly desired by novice or casual users
when creating character animations, by identifying commonly used
motions in user-created character animations.

Additionally, researchers have conducted research on ergonomics
using hand-held devices. Dong et al. [5] classify frequently used
motion gestures for hand-held devices. Based on the analysis con-
ducted by Benzina et al. [4], for 3D positionable input devices with
2D touch inputs (e.g., buttons on the controllers), 4 DOFs manipula-
tion metaphors centered on the roll and pitch rotation axes perform
the best in terms of input efficiency and accuracy. Given that virtual
reality controllers share these features, and in light of the preceding
discovery, the action design in our system should be as near to this
metaphor as possible.

Based on previous studies, we select 13 most commonly used
actions to design our input gestures, described in Table 2. We also
show some example gestures and their corresponding actions in
Figure 5. The first input specifies the trajectory of an action type,
and the second input specifies the character’s local motion dynam-
ics. For instance, when the character’s state is required to be “lie
down,” the VR controller will be horizontal. For some actions such
as “climb,” “crawl,” and “roll,” we choose their most representa-
tive characteristic as the indicator of their second input. Using the
“climb” motion as an example, if we use real-world experience as
the reference, the most representative characteristic of the climbing
movement is that two arms travel up and down sequentially, creat-
ing a repeated “left-right-left” pattern throughout the movement.
Based on this observed pattern, the gesture (in the second input)
for the climb motion needs to swing from side to side to imitate the
movement pattern.

3.3 Gesture Recognition
Accurate and efficient gesture classification is essential for any suc-
cessful gesture-based interaction system. Spatial Motion Doodles
(SMD) [7] and ARAnimator [27] rely on manually-designed feature
extraction techniques that aim to match specific scenarios. The in-
corporation of prior knowledge is advantageous in cases where the
conditions of interaction are well-defined. However, tailor-made

Table 2: Pre-defined action categories in this work

Name Trajectory input controller gesture input Env. information

Idle No movement Stand still On the ground
Walk/run/fly Horizontal move Stand still On the ground/in air
Jump Jump Stand still No walls/in air
Climb Vertical move Swing left and right vertically Near a wall
Crawl Horizontal move Swing left and right horizontally On the ground
Jump over Jump(slight) Hurdle Short walls
Slide Horizontal move Lay still On the ground
Push Horizontal move Lean forward Moveable objects
Pull Horizontal move Lean backward Moveable objects
Lie down No movement Lay still On the ground
Fall Horizontal down Stand still In air
Swing No movement Swing back and forth In air
Roll/flip Horizontal move Swing in a circle On the ground

categories resulting from such an approach may suffer from over-
specialization and lack the flexibility necessary for accommodating
the full range of possible inputs. Furthermore, creating new cate-
gories is a non-trivial task that is contingent upon the developers’
extensive experience. In situations where unintentional inputs are
frequent, such as those encountered during natural interactions in-
volving human users, manually-designed classification schemes can
pose significant challenges. Thus, we opt to utilize neural networks
in our gesture recognition approach.

3.3.1 Data Collection, Pre-processing, and Feature Selection. To
train our deep learning model for gesture recognition, we collected
16 types of gesture motions (refer to Table 2) of 15 participants (ages
from 20 to 23; 8males and 7 females; all of them have no professional
knowledge on animation creating but with basic knowledge of VR
devices) as the training data. All participants were recruited on
campus. We had each participants do all the gestures twice to com-
pose a dataset containing 30 samples for each gesture, while each
sample was at least 15 seconds in length. We use data augmentation
by rotating our captured data around the z-axis 45 degrees, seven
times in total. This removes any orientation issue and expands our
training data.

The original input data includes two trajectories (of the VR con-
troller), corresponding to the first input and the second input re-
spectively. Then, using the well-known discrete differential calcu-
lus, we compute the speed and acceleration from each 1-D signal
sequence of positional input. Specifically, instead of using Euler
angles or Quaternions to represent 3D rotations, we choose the
6D continuous representation proposed by Zhou et al. [28] due to
its compatibility with neural networks. The final input features
contain 18 dimensions, which include the velocity and acceleration
of the first input, the velocity and acceleration of the second input,
as well as the rotation information of the second input.

3.3.2 Deep Learning based Gesture Recognition. The schematic
view of our deep learning based gesture recognition model is illus-
trated in Figure 7. It uses the DeepConvLSTM structure [18] as the
basic structure. Additionally, we include Batch Normalization (BN)
layers preceding each convolution layer to improve performance
[12]. The information that needs to be provided at runtime includes
action data (n:1, h:1, w:24, c:18), ℎ0 and 𝑐0 (n:1, h:1, w:24, c:1). Here
ℎ0 and 𝑐0 are initial values of the LSTM hidden layer parameters,
and ℎ0 and 𝑐0 are filled with 0 constants. We choose to use the

7001

Sketching Animation in Immersive Environment With 3+6 DOFs Motion Gestures MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

X

Y
Z

Z+Move up Swinging
(Vertical)

Second inputFirst input

X

Y
Z rotX

X

Y
Z

X/Y +-
Horizontal move
First input Second input

X

Y
Z

Stand still

X

Y
Z

X/Y/Z +-Jump
First input Second input

X

Y
Z

Stand still

(a) Walk/run/fly (b) Jump

(d) Climb

X

Y
Z

X/Y +-
Horizontal move
First input Second input

X

Y
Z

Lay still

(e) Slide

X

Y
Z

X/Y +-
Horizontal move
First input Second input

X

Y
Z

Circle

(f) Roll

Swinging
(horizontal)

Second input

X

Y
Z

rotZ

(c) Crawl

X

Y
Z

X/Y +-
Horizontal move
First input

Figure 5: Examples for pre-designed gestures in our system. The first input specifies the trajectory of an action type. The second
input is to specify the character’s local motion dynamics, following the ergonomics of the VR controller. Since the second
input is used to specify the character’s local movement, some actions may have similar second inputs.

classic cross-entropy loss function for multi-classifications in our
network.

The input window size when dividing the pre-processed data is
set to 24. The sliding stride of the window is 9, Each slide generates
input data with a size of (18, 24), along with its associated action la-
bel. With a time interval of 0.05 second between samples, a window
size of 24 can capture 1.2 seconds of motion. Motions shorter than
1.2 seconds will be ignored by our system. The sequence length
seq_len is determined experimentally. If it is too short, the sampled
sequence will fall short of the minimum period required for self-
repeating motions such as walking. Increasing the window size
above a certain limit results in decreased precision in recognizing
actions and may result in the inclusion of excessive information,
causing overfitting of the network.

Figure 6: The normalized confusion matrix of the test results.
Actual prediction results are on the X-axis and the ground
truth labels are on the Y-axis.

The model was trained for a total of 200 epochs with a batch
size of 24. Test set inference was performed every 10 epochs of

the training process, and the resulting accuracy was recorded. The
model with the highest accuracy rate on the test set was selected.
During training, we obtained a minimum loss function value of
1.879, an accuracy rate of 81.2%, and an optimal F1 score of 0.785.

Figure 6 shows the confusion matrix on the test data. As shown
in this figure, our approach is capable of accurately classifying most
of the actions studied in this work, with the exception of the “fall”
action. A sizable portion of the “fall” motion data is classified as
“idle/move/jump.” Further research needs to be done on improving
the accuracy of recognizing the “fall” action.

3.3.3 Real-time Prediction Workflow. We implemented our pre-
trained model for real-time gesture prediction in Unity 2019.4.20f1c1,
with the aid of the Unity Barracuda 1.0.4 plugin.

We present a straightforward example to explicate our prediction
process in greater detail. During runtime, we employ the identical
moving window utilized for model training, consolidating the input
features to predict gestures from the trained neural network model.
Each prediction result represents the outcome of prediction within
a given moving window. Sequences of actions and their correspond-
ing prediction results are displayed in Figure 8. We illustrate the
scenario where the prediction yields a “1-1-1-1-1-” result, indicat-
ing that prediction results extracted from five motion segments
are under consideration. We then determine the final prediction by
invoking a majority voting scheme among all the prediction nodes.
As a specific example, our final prediction result is “1-136”, suggest-
ing that the action should be one of walking, running, or flying,
having 136 frames. Notably, environment information also plays
a vital role in the prediction process. For instance, we might as-
sume that the corresponding environmental context is “grounded”.
Based on this assumption, we can infer that the performed action is
consistent with a “walk/run” state. By subsequently examining the
character’s velocity, we can distinguish between a “walk” or “run”
action dependent on whether this velocity surpasses a user-defined
threshold.

In our prototype, we use a humanoid character with the height
of around 0.2 unity units. We detect the presence of an object
right below using a 0.15-unit-long ray casting to provide ground

7002

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Ruizhao Chen, Ye Pan, Zhigang Deng, Lili Wang, & Lizhuang Ma

Classification Global feature extractionLocal feature extraction

Convolution Block
C:18→32

Input features
（N:-,C:18,L:24）

Conv.
Layer

(ReLU)

BN
Layer

C:32→32

FC
Layer Softmax Output results

（N:-,C:13）

N：Batch size(depend on
practice)
C：Channels
L：Time length of input C:32→32 C:32→32

LSTM
Layer

Kin: Input channels

……

Kernel 1
（Size:Kin*5）

Kernel 2
（Size:Kin*5）

Kernel Kout
（Size:Kin*5）

……

Input window length=5

……

Kout: Output channels

Drop-
out

Flatten
output of
LSTM

……

0.1

0.32

0.1

0.8

……

13 classes in total.

Choose the class
with max
probability as
prediction result.

Hidden layer size=24

LSTM
Layer

Figure 7: The schematic view of the deep learning based gesture recognition model. The model is customized to meet our
requirement for gesture recognition. The Unity Barracuda plugin is used to deploy a pre-trained model for real-time gesture
recognition.

(a) motion sample (b) corresponding prediction se-
quence

Figure 8: An example of motion prediction at runtime.

information. Wall existence is detected within a cylinder of the
radius of 0.01 units and the height of 0.2 units. This information is
used to select the appropriate motion type and adapt the animation.

3.4 Character Animation Synthesis
We utilized the state machine system integrated within the Unity
engine to compile pre-established animation clips into a runtime
animation that adheres to the end-user’s specification. The assort-
ment of animation clips was procured from Mixamo [1].Once the
corresponding action sequence has been determined, our system
activates the Unity APIs to commence the playback of their associ-
ated animations. To ensure the character’s proper alignment with
the ground, we conducted fine-tuning as a supplementary post-
processing step. Additionally, we adjusted the animation playback
rate based on the action’s speed.

Our approach limits the fade-in and fade-out times to 0.25 sec-
onds to assure a natural transition between two different action

animations. The state machine’s states permit transitions among
each other, contributing to the transition animation’s fluidity.

3.5 Double Doodles: Environment Deployment

(a) the experimental VR envi-
ronment in our system

(b) 3D virtual environment seen by the
user

Figure 9: Snapshots of the Double Doodles system prototype.

Wedeveloped a prototype systemnamed “Double Doodles” based
on the Unity engine. This system uses Oculus Rift S as the reference
device during development. The test VR environment is shown in
Figure 9.

At runtime, the user wears a VR head-mounted display headset
and holds a VR controller in each hand. The buttons on the VR
controllers can be used to trigger action recording or a saving
function. The X and Y keys on the left controller can control the
first and second action recording. If the user presses and holds the
X key, the system will continue to record the first input, capturing
the right controller’s position and rotation. Releasing the X key
indicates the end of the first input. The user can then record the
second action in a similar manner. After all recordings are complete,
the data can be saved by pushing the B button on the right controller.

7003

Sketching Animation in Immersive Environment With 3+6 DOFs Motion Gestures MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Once produced, we can display the animation in a VR environment
with user-defined trajectory and motion dynamics.

The Double Doodles system was built and run within the Unity
environment, which was deployed on a PC with AMD Ryzen 3800X
CPU, Nvidia GTX 1080 GPU, 16GB RAM, and Windows 10 OS. We
chose Oculus Rift S as our VR device. Data collection and network
training were also accomplished on the same PC.

The system performance indicators we measured include pro-
jection time (processing a 10-second input takes 2.49 seconds on
average), startup speed (on average 8.76 seconds), and data saving
time (on average 0.46 seconds).

4 USER STUDY
4.1 Usability Study
4.1.1 Study Introduction. The objective of this study is to investi-
gate the usability of the “Double Doodles” software from a novice
user’s point of view. The specific objective is to assess whether
the application meets users’ needs and evaluates their task perfor-
mance within the system. This evaluation considers four aspects: (1)
user-friendliness, (2) functional completeness, (3) visual effects, and
(4) response time. Following the study method of ARAnimator[27],
our study also comprises both a system usability test and a task
load assessment.

4.1.2 Participants. We recruited 13 participants on campus (ages
between 19 and 22; 8 males and 5 females). All of them do not have
prior experience or background in animation creation, which well
fits the purpose of our study.

4.1.3 Materials. Each participant is asked to utilize our system for
creating an action sequence within a VR environment as outlined
in section 3.5. The VR environment’s configuration is demonstrated
in 9a, comprising two tables placed with boxes of various sizes and
positions. The largest box is reserved for climbing and jumping an-
imations, whereas smaller ones are designated for use as obstacles.
Each participant will receive instructions on how to use the system
and perform supported gestures before crafting their animations.
The participants will be instructed to create an animation sequence
with Idle, Walk, Climb, and Jump. The proposed time frame for task
completion per participant is 24 minutes. Participant’s primary ob-
jective is to produce engaging and authentic character animations
that are well-suited to the 3D VR environment.

4.1.4 Procedure. The experimenter helps participants to wear the
VR headset and provides instructions before the experiment. After
the participants confirm that the VR software functions properly
and that the VR headset has been adjusted correctly, the experi-
ment will proceed. During the experiment, participants cannot seek
guidance from the experimenter.

We asked participants to fill in two questionnaires after complet-
ing the experiment, following the guide in [23]. The first question-
naire is the System Usability Scale (SUS) [3] (as shown in appendix).
The second questionnaire is the NASA Task Load Index (NASA-
TLX) [11], which is used to evaluate the subjective workload of
the participants when using our system. Each participant was also
interviewed by the experimenter to obtain feedback on their expe-
rience.

(a) the average original SUS scores (b) NASA-TLX scores

Figure 10: Results of the post-study questionnaires. (a) The
mean scores and standard deviations of the original SUS
scores. The higher the score for odd-numbered questions,
the better; and even-numbered questions are opposite. (b)
Averaged workload scores for each index.

4.1.5 Study Results.

SUS Scores. The average original scores of the SUS questionnaire
are shown in Figure 10a. Our system scored 71.92 according to the
standard SUS score calculation process, which outperforms roughly
73% of similar systems, as reported by the research study conducted
by Sauro et al. [14]. Combining the fourth and tenth questions of
the SUS questionnaire forms a Learnability indicator, while the
other questions together form a Usability indicator [14]. Figure 10a
illustrates that the participants gave significantly higher scores on
the fourth question, suggesting that participants experienced some
difficulty learning the pre-designed gestures, as opposed to relying
on their intuition. From the usability perspective, the participants
scored our system around 4 on positive remarks (odd-numbered
questions) and around 1.8 on negative remarks (even-numbered
questions). These results show that our system can achieve a rela-
tively high level of usability, even for novice users.

NASA-TLX Scores. The obtained average NASA-TLX scores are
shown in Figure 10b. By summing up the scores, we obtained a
total workload score of 42.94. According to the statistics of NASA-
TLX scores in different tasks by Grier [9], this score is about the
35th percentile, which means that the workload of our system
is approximately lighter than 65% similar systems. As shown in
Figure 10b, the participants gave high scores for the mental demand
aspect. During our post-study interviews with participants, we
found that the second input and motion segmentation processes
need considerable brain-power for them.

According to our post-study interviews with the participants,
they can understand the system’s core concept, interfaces, and
usages within ten minutes. They also believed that the final anima-
tions produced by our technology accurately depict their design
goal. Several character animations created by the participants in
our study are shown in the appendix.

4.2 Effectiveness Study
4.2.1 Study Introduction. The purpose of this user study is to eval-
uate the effectiveness of the proposed “Double Doodles” system.
We compare our system with existing methods, such as, ARani-
mator [27] and Spatial Motion Doodles [7], and explore whether
the 3+6 DOFs controlling of the system is better than the 6 DOFs

7004

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Ruizhao Chen, Ye Pan, Zhigang Deng, Lili Wang, & Lizhuang Ma

controlling in terms of efficiency and effectiveness. System will be
assessed based on four aspects identified as important by experts:
(1) animation quality, (2) efficiency, and (3) customization features.

4.2.2 Participants. The study involved 30 participants (ages be-
tween 19 and 28; 15males and 15 females) who have basic familiarity
with VR technology and have experience with character animation.
Participants are recruited through social media and online forums
associated with animation, game design, and VR technology.

4.2.3 Materials. Participants use the “Double Doodles” system to
create character animations in a VR environment using motion
gestures. The system configuration is similar to that described in
subsection 3.5, but with three different control methods. Experi-
mental group 1 utilizes the ARAnimator animation input method,
where the VR controller substitutes for the mobile phone’s origi-
nal position. Experimental group 2 uses an input interaction form
where participants can input partial movement simultaneously with
both hands. The control group uses the original 3+6 DOF control
method.

4.2.4 Procedure. The participants will be randomly assigned to
one of three groups. Each group will receive a brief tutorial on
how to use the assigned system to create character animations
using motion gestures. They will be allowed to practice to become
familiar with the system. After the tutorial, the participants are
asked create a 30-second character animation. The concept for the
animation will be the same for both groups, and the participants
will be given 10 minutes to complete the task.

After completing the first animation task, the participants will
take a break and then create another 30-second animation using the
other controlling mechanism. Each participant in the experiment
will create the same animation three times, with the three groups
rotating to ensure an equal number of participants using the three
different system configurations in various orders.

The participantswill be asked to fill out a UMUXquestionnaire[6]
to rate the effectiveness, efficiency, and satisfaction of each control-
ling mechanism after the experiment.

4.2.5 Study Results. By utilizing UMUX scoring standards[6], ex-
perimental group 1 obtained a score of 51.33, experimental group 2
obtained 54.31, and the control group achieved 61.25 points. The er-
ror caused by the order of using the system has been eliminated by
controlling the number of participants with different usage orders.

An ANOVA significance test was conducted on the outcomes of
three groups of interaction experiments. The results demonstrated
significant main effects of the interaction methods (F (2, 58) = 11.98,
p < 0.001). Furthermore, Tukey’s Honestly Significant Difference
(HSD) test revealed that all differences between the interaction
methods were statistically significant (p < 0.001).

The results indicate that the 3+6 DoFs controlling group out-
performed the 6 DoFs controlling group in terms of efficiency and
effectiveness when generating character animations using motion
gestures. 3+6 DoFs controlling group participants created anima-
tions more swiftly and accurately, resulting in a higher satisfaction
level with the system.

Nevertheless, for the 3+6 DoFs design, performing simultaneous
operations is still unrealistic for users. In terms of usability, the

score of experimental group 2 is significantly lower than the score
achieved by the control group under the two-step input scenario.

5 DISCUSSION
We found that it took approximately one minute for the partici-
pants to correctly generate an animation sequence involving three
actions. We demonstrate that the Double Doodles system in terms
of ease of use and the capability to match user needs. The primary
learning cost comes from the new input mode and its associated re-
lationship with actions and animations. However, in general, users
can quickly learn the basic use of our system, demonstrating that
users, including novices, can learn and well grasp the concept of
two-staged inputs in a reasonably short time.

In this paper, we have not studied how the user’s expertise af-
fects the quality of their animations. It requires considerable work
to transform this prototype method into a system with more opera-
tions, which users may perform and design scenarios that can be
extended to target users’ requirements. Additionally, we are yet to
identify a suitable way to conduct comparative evaluations with
closely related animation systems because they are designed for
different immersive scenes and input devices. It is challenging to
determine a compelling approach to evaluate them.

In the future, we plan to add more actions to our system, leverag-
ing the powerful flexibility of our 3+6 DOFs-based control method
for VR gesture design. In order to incorporate new actions, it is
necessary to have a larger user base to perform these actions and
gather the corresponding motion data. This data is then used to
train classification neural networks for action segmentation and
recognition. Once trained, these actions can be seamlessly inte-
grated into our system. Also, the manner in which certain actions
are expressed also could be improved to increase their identifiabil-
ity. Moreover, we plan to extend the use of our method to animate
non-human characters in VR as part of our future research.

6 CONCLUSION
To address the fundamental DOF gap that is well recognized in
existing approaches for interactive character animation generation
in VR environment, we offer an in-situ, 3+6 DOFs, two-stage-inputs
method to generate character animations in an immersive VR en-
vironment interactively. Also, we introduce a set of basic gestures
that can be performed with VR controllers as metaphors for charac-
ter animations. Finally, through a carefully-designed user study we
demonstrate that our approach can be effectively used for VR-based
interactive character animation generation in practice.

Our system utilizes the advantages of VR/AR environments, pro-
viding users with an intuitive, user-friendly, and efficient method
for creating character animations. It can be applied to various do-
mains, including virtual reality filmmaking, stage rehearsal, and the
future of storytelling. The combination of stereoscopic 3D percep-
tion, room-scale space, and 3+6 DoF input devices offers a natural
interface for performing 3D character animation.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China (NSFC, NO. 62102255), NSFC (No. 61972157), and Zhigang
Deng was supported in part by US NSF IIS 2005430.

7005

Sketching Animation in Immersive Environment With 3+6 DOFs Motion Gestures MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] Adobe. 2022. Mixamo. https://www.mixamo.com.
[2] Raphael Anderegg, Loïc Ciccone, and Robert W. Sumner. 2018. PuppetPhone:

Puppeteering Virtual Characters Using a Smartphone. In Proceedings of the 11th
Annual International Conference on Motion, Interaction, and Games (Limassol,
Cyprus) (MIG ’18). Association for Computing Machinery, New York, NY, USA,
Article 5, 6 pages. https://doi.org/10.1145/3274247.3274511

[3] Aaron Bangor, Philip T. Kortum, and James T. Miller. 2008. An Empirical Evalu-
ation of the System Usability Scale. Int. J. Hum. Comput. Interact. 24, 6 (2008),
574–594. https://doi.org/10.1080/10447310802205776

[4] Amal Benzina, Marcus Toennis, Gudrun Klinker, and Mohamed Ashry. 2011.
Phone-Based Motion Control in VR: Analysis of Degrees of Freedom. In CHI
’11 Extended Abstracts on Human Factors in Computing Systems (Vancouver, BC,
Canada) (CHI EA ’11). Association for Computing Machinery, New York, NY,
USA, 1519–1524. https://doi.org/10.1145/1979742.1979801

[5] Ze Dong, Thammathip Piumsomboon, Jingjing Zhang, Adrian Clark, Huidong
Bai, and Rob Lindeman. 2020. A Comparison of Surface and Motion User-Defined
Gestures for Mobile Augmented Reality. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI
EA ’20). Association for Computing Machinery, New York, NY, USA, 1–8. https:
//doi.org/10.1145/3334480.3382883

[6] Kraig Finstad. 2010. The Usability Metric for User Experience. Interacting with
Computers 22 (09 2010), 323–327. https://doi.org/10.1016/j.intcom.2010.04.004

[7] Maxime Garcia, Remi Ronfard, and Marie-Paule Cani. 2019. Spatial Motion
Doodles: Sketching Animation in VR Using Hand Gestures and Laban Motion
Analysis. In Motion, Interaction and Games (Newcastle upon Tyne, United King-
dom) (MIG ’19). Association for Computing Machinery, New York, NY, USA,
Article 10, 10 pages. https://doi.org/10.1145/3359566.3360061

[8] Google. 2022. Tilt Brush. https://www.tiltbrush.com/.
[9] Rebecca A. Grier. 2015. HowHigh is High? AMeta-Analysis of NASA-TLX Global

Workload Scores. Proceedings of the Human Factors and Ergonomics Society Annual
Meeting 59, 1 (2015), 1727–1731. https://doi.org/10.1177/1541931215591373

[10] Jens Grubert, Eyal Ofek, Michel Pahud, and Per Ola Kristensson. 2018. The Office
of the Future: Virtual, Portable, and Global. IEEE Comput. Graph. Appl. 38, 6 (Nov.
2018), 125–133. https://doi.org/10.1109/MCG.2018.2875609

[11] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006),
904–908. https://doi.org/10.1177/154193120605000909

[12] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015 (JMLR Workshop and Conference Proceedings, Vol. 37), Francis R.
Bach and David M. Blei (Eds.). JMLR.org, 448–456. http://proceedings.mlr.press/
v37/ioffe15.html

[13] Fabrizio Lamberti, Gianluca Paravati, Valentina Gatteschi, Alberto Cannavò,
and Paolo Montuschi. 2018. Virtual Character Animation Based on Affordable
Motion Capture and Reconfigurable Tangible Interfaces. IEEE Transactions on
Visualization and Computer Graphics 24, 5 (2018), 1742–1755. https://doi.org/10.
1109/TVCG.2017.2690433

[14] James R. Lewis and Jeff Sauro. 2009. The Factor Structure of the System Usability
Scale. In Human Centered Design, First International Conference, HCD 2009, Held
as Part of HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings
(Lecture Notes in Computer Science, Vol. 5619), Masaaki Kurosu (Ed.). Springer,
94–103. https://doi.org/10.1007/978-3-642-02806-9_12

[15] Hui Liang, Jian Chang, Ismail Khalid Kazmi, Jian J. Zhang, and Peifeng Jiao. 2017.
Hand gesture-based interactive puppetry system to assist storytelling for children.
Vis. Comput. 33, 4 (2017), 517–531. https://doi.org/10.1007/s00371-016-1272-6

[16] Aline Menin, Rafael Torchelsen, and Luciana Nedel. 2018. An Analysis of VR
Technology Used in Immersive Simulations with a Serious Game Perspective.
IEEE Comput. Graph. Appl. 38, 2 (March 2018), 57–73. https://doi.org/10.1109/
MCG.2018.021951633

[17] Juliana Montes and Pablo Figueroa. 2019. VR Salsa: Learning to Dance in
Virtual Reality. In Proceedings of the IX Latin American Conference on Hu-
man Computer Interaction (Panama City, Panama) (CLIHC ’19). Association
for Computing Machinery, New York, NY, USA, Article 2, 4 pages. https:
//doi.org/10.1145/3358961.3358969

[18] Francisco Javier Ordóñez Morales and Daniel Roggen. 2016. Deep Convolu-
tional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity
Recognition. Sensors 16, 1 (2016), 115. https://doi.org/10.3390/s16010115

[19] Ye Pan and Kenny Mitchell. 2020. Group-Based Expert Walkthroughs: How
Immersive Technologies Can Facilitate the Collaborative Authoring of Character

Animation. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Ab-
stracts and Workshops (VRW). IEEE, 188–195. https://doi.org/10.1109/VRW50115.
2020.00041

[20] Ye Pan and Kenny Mitchell. 2020. PoseMMR: A Collaborative Mixed Reality
Authoring Tool for Character Animation. In 2020 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW). 758–759. https:
//doi.org/10.1109/VRW50115.2020.00230

[21] D.J. Sturman. 1998. Computer puppetry. IEEE Computer Graphics and Applications
18, 1 (1998), 38–45. https://doi.org/10.1109/38.637269

[22] Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion Doodles:
An Interface for Sketching Character Motion. ACM Trans. Graph. 23, 3 (Aug.
2004), 424–431. https://doi.org/10.1145/1015706.1015740

[23] Thomas Tullis and William Albert. 2013. Measuring the User Experience, Second
Edition: Collecting, Analyzing, and Presenting Usability Metrics (2nd ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[24] Tvori. 2022. Tvori. https://tvori.co/.
[25] Andreia Valente, Augusto Esteves, and Daniel Lopes. 2021. From A-Pose to AR-

Pose: Animating Characters in Mobile AR. In ACM SIGGRAPH 2021 Appy Hour
(Virtual Event, USA) (SIGGRAPH ’21). Association for Computing Machinery,
New York, NY, USA, Article 4, 2 pages. https://doi.org/10.1145/3450415.3464401

[26] Daniel Vogel, Paul Lubos, and Frank Steinicke. 2018. AnimationVR - Interactive
Controller-based Animating in Virtual Reality. In 2018 IEEE 1st Workshop on
Animation in Virtual and Augmented Environments (ANIVAE). 1–6. https://doi.
org/10.1109/ANIVAE.2018.8587268

[27] Hui Ye, Kin Chung Kwan, Wanchao Su, and Hongbo Fu. 2020. ARAnimator:
In-Situ Character Animation in Mobile AR with User-Defined Motion Gestures.
ACM Trans. Graph. 39, 4, Article 83 (July 2020), 12 pages. https://doi.org/10.1145/
3386569.3392404

[28] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. 2019. On the
Continuity of Rotation Representations in Neural Networks. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 5738–5746. https:
//doi.org/10.1109/CVPR.2019.00589

A SUS QUESTIONNAIRE
This is the SUS Questionnaire used in our study.

Table 3: The SUS post-study Questionnaire

No. Question

1 I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I would need the support of a technical person to be able to use this system.
5 I found the various functions in this system were well integrated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this system very quickly.
8 I found the system very cumbersome to use.
9 I felt very confident using the system.
10 I needed to learn a lot of things before I could get going with this system.

B UMUX QUESTIONNAIRE
This is the UMUX Questionnaire used in our study.

Table 4: The UMUX Questionnaire

No. Question

1 This prototype capabilities meet my requirements.
2 Using this prototype is a frustrating experience.
3 This prototype is easy to use.
4 I have to spend too much time correcting things with this prototype.

7006

https://www.mixamo.com
https://doi.org/10.1145/3274247.3274511
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1145/1979742.1979801
https://doi.org/10.1145/3334480.3382883
https://doi.org/10.1145/3334480.3382883
https://doi.org/10.1016/j.intcom.2010.04.004
https://doi.org/10.1145/3359566.3360061
https://www.tiltbrush.com/
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1109/MCG.2018.2875609
https://doi.org/10.1177/154193120605000909
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/TVCG.2017.2690433
https://doi.org/10.1109/TVCG.2017.2690433
https://doi.org/10.1007/978-3-642-02806-9_12
https://doi.org/10.1007/s00371-016-1272-6
https://doi.org/10.1109/MCG.2018.021951633
https://doi.org/10.1109/MCG.2018.021951633
https://doi.org/10.1145/3358961.3358969
https://doi.org/10.1145/3358961.3358969
https://doi.org/10.3390/s16010115
https://doi.org/10.1109/VRW50115.2020.00041
https://doi.org/10.1109/VRW50115.2020.00041
https://doi.org/10.1109/VRW50115.2020.00230
https://doi.org/10.1109/VRW50115.2020.00230
https://doi.org/10.1109/38.637269
https://doi.org/10.1145/1015706.1015740
https://tvori.co/
https://doi.org/10.1145/3450415.3464401
https://doi.org/10.1109/ANIVAE.2018.8587268
https://doi.org/10.1109/ANIVAE.2018.8587268
https://doi.org/10.1145/3386569.3392404
https://doi.org/10.1145/3386569.3392404
https://doi.org/10.1109/CVPR.2019.00589
https://doi.org/10.1109/CVPR.2019.00589

	Abstract
	1 Introduction
	2 Related Work
	2.1 Character Animation in AR/VR
	2.2 VR Ergonomics in Computer Puppetry

	3 System Design and Development
	3.1 VR Interaction Design: Two-staged Inputs
	3.2 Gesture Design
	3.3 Gesture Recognition
	3.4 Character Animation Synthesis
	3.5 Double Doodles: Environment Deployment

	4 User Study
	4.1 Usability Study
	4.2 Effectiveness Study

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	A SUS Questionnaire
	B UMUX Questionnaire

